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EXECUTIVE SUMMARY 

This report presents the field validation of a wireless ultrasonic thickness measurement system on 

in-service steel bridges for long-term corrosion monitoring. The developed system utilizes Martlet 

wireless ultrasonic sensing devices with two specially designed daughterboards: the high-rate 

ultrasonic board and the pulser board. The compact ultrasonic sensing device is capable of high-

voltage pulse excitation, filtering/amplification of the received ultrasonic signal, and high-speed 

analog-to-digital conversions (up to 80 MHz). To ensure accurate measurements, the project first 

derives the calibration function of the Martlet ultrasonic device. Subsequently, thickness 

measurements are carried out on 14 steel members with various thickness values. Measurements 

from the Martlet ultrasonic device are compared with readings obtained from a commercially 

available handheld thickness gauge for further validation. 

Field testing is first conducted on a highway bridge in LaGrange, GA. The Martlet ultrasonic 

device is confirmed to provide the accurate thickness values of the web and bottom flange of a 

steel girder. This bridge has electricity available, allowing convenient implementation of the long-

term monitoring system. A Martlet wireless ultrasonic device and a 2.25 MHz dual-element 

transducer are installed at the web of a steel girder as a preliminary validation of the long-term 

monitoring system. The thickness measurements have been reliably obtained for about seven 

months. 

Following the successful operation confirmed on the first bridge, this project proceeds to 

implement the system on a second bridge, which is located in Douglas County, GA. Visual 

inspection of the bridge confirms corrosion on structural members across the bridge. A solar panel 

and a support structure are installed to provide continuous power for the battery and gateway 
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computer. Four wireless ultrasonic sensing units are installed on three pile tops and the bottom 

flange of a beam on the bridge. Ultrasonic data are collected at scheduled intervals and 

automatically uploaded to the cloud, enabling remote monitoring of the thickness values over time. 

Through wireless ultrasonic sensing devices and a gateway computer installed on-site, this 

research validates the feasibility of continuous steel thickness measurement that can be monitored 

remotely. 
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CHAPTER 1. INTRODUCTION 

Recent advancements in wireless sensing technology have provided structural health monitoring 

systems with a cost-effective and efficient way to collect, analyze, and store data.[1] Wireless 

sensors can be installed at critical locations across a structure to monitor its condition. The 

collected sensor data can be wirelessly transmitted to the cloud, allowing engineers to monitor the 

structural condition and identify potential problems in real time. 

Ultrasonic thickness measurement is a technique that can measure the thickness of a metal plate, 

as shown in figure 1. The technique works by sending ultrasonic waves through the material and 

measuring the time of flight (ToF), which is the time it takes for the waves to travel back and forth. 

The identified ToF is then used to calculate the thickness of the specimen. A thin layer of viscous 

or liquid gel (known as couplant) is typically applied between the transducer and specimen to 

facilitate the propagation of solid waves. 

  

Figure 1. Diagram. Ultrasonic thickness measurement. 
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Regularly assessing corrosion damage on bridge structural members is crucial to making informed 

maintenance decisions. However, current practices primarily rely on human visual inspection, 

which is labor-intensive and expensive, mainly due to the difficulties in regularly accessing the 

underside of the bridge deck. The main goal of this project is to develop and implement long-term 

ultrasonic thickness measurement systems on steel members of in-service bridges using Martlet 

wireless sensing devices. The measured ultrasonic data are uploaded to the cloud through an on-

site gateway computer and can be accessed remotely for decision-making.  
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CHAPTER 2. LABORATORY STUDIES OF MARTLET WIRELESS ULTRASONIC 

SENSING DEVICE 

This chapter begins with a description of the Martlet wireless ultrasonic sensing device. The 

calibration function of the Martlet ultrasonic device is then derived, using a steel calibration block. 

Finally, laboratory experiments compare thickness measurement values between the Martlet 

ultrasonic device and a commercial handheld device.  

MARTLET ULTRASONIC WIRELESS SENSING UNIT 

This section describes the Martlet ultrasonic thickness measurement device. Figure 2 shows the 

functional diagram. The Martlet wireless sensing system is a low-cost platform for intelligent 

infrastructure monitoring.[2] As shown in figure 2, the Martlet motherboard incorporates a dual-

core Texas Instruments Piccolo microcontroller, which can run up to 90 MHz. A Zigbee radio 

transmits data at rates up to 250 kbps. With Martlet’s modular design, researchers have developed 

a variety of stackable daughterboards to interface with various sensors used in structural health 

monitoring.[3-7] Recently, the authors and collaborators have developed two daughterboards for 

ultrasonic thickness measurement: the high-rate ultrasonic board and the pulser board.[6, 8] These 

two daughterboards, together with the Martlet motherboard, form a Martlet ultrasonic thickness 

measurement device. 
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Figure 2. Diagram. Functional diagram of the Martlet ultrasonic 

thickness measurement device. 

The high-rate ultrasonic board consists of three modules: the excitation module, the receiving 

module, and the analog-to-digital converter (ADC) module. The excitation module was designed 

for launching surface waves and is not utilized in this study for thickness measurement. Instead, 

the pulser board serves as the transducer excitation source for measuring specimen thickness. The 

receiving module conditions the signal from a transducer through a first-order high-pass filter, 

amplitude amplification (10dB/20dB/30dB), and a fourth-order low-pass filter. Among the 

commonly used standard filter types, Bessel is selected for the fourth-order low-pass filter that is 

critical for the signal conditioning performance. Bessel filters offer a linear phase performance and 

help maintain the signal waveform in the time domain, which assists in accurately identifying the 

ToF of the received signal.[9] The high-speed ADC module samples the filtered and amplified 

signal with a sampling frequency up to 80 MHz. The sampled data are transferred to the Martlet 
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motherboard through a serial peripheral interface (SPI) connection. Ultimately, the Martlet 

motherboard wirelessly sends the data to a base station connected to a personal computer (PC). 

When the ultrasonic solid wave propagates into the specimen, the amplitude of the ultrasonic signal 

decreases as the wave reflects multiple times between the two surfaces of the specimen. A larger 

signal amplitude is preferred to ensure a good signal-to-noise ratio, resulting in a more accurate 

thickness measurement. For this purpose, a compact pulser board has been developed to generate 

a short-pulse excitation at high voltage. The high-voltage direct current (DC)-to-DC converter 

increases the excitation voltage up to 200V. An onboard potentiometer can easily adjust the voltage. 

The metal-oxide semiconductor field-effect transistor (MOSFET) is a power amplifier that accepts 

a low-power command signal from a microcontroller on the Martlet and produces a high-current 

drive input for the gate of the MOSFET. The MOSFET initiated by the high-current drive input 

achieves the fast-switching time required by the pulse excitation. An example pulse excitation 

signal generated by the developed pulser board can provide a 200V pulse with about 1 μs duration. 

With this high excitation voltage, the ultrasonic signal can achieve a better signal-to-noise ratio, 

which helps improve the accuracy of the ultrasonic thickness measurement. Note that the pulser 

board requires an external 12 V power supply separated from the power supply to the motherboard 

and the high-rate ultrasonic board. 

Figure 3 shows the printed circuit board (PCB) design of the Martlet ultrasonic thickness 

measurement device that consists of the Martlet motherboard, the high-rate ultrasonic board, and 

the pulser board. The planar dimension of the motherboard is 2.5 inch × 2.35 inch. The pulser and 

high-rate ultrasonic boards can stack on the Martlet motherboard through the four corner 

connectors. The device connects with a dual-element transducer (as illustrated in figure 1) with 

excitation and receiving ports. In this study, a 2.25 MHz dual-element transducer is selected. 
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Figure 3. Photographs. Printed circuit board design of the 

Martlet wireless ultrasonic device. 

DERIVATION OF CALIBRATION FUNCTION 

Generally, it is necessary to calibrate thickness measurement values to identify the offset value 

specific to the instrument, transducer type, and ultrasonic characteristics. This procedure, known 

as calibration, is crucial for achieving accurate ultrasonic thickness measurements. Most 

commercial thickness measurement devices have built-in calibration features to improve the 

accuracy of measurements. To establish a calibration function for the Martlet ultrasonic device, 

we conduct thickness measurements on a 10-step steel calibration block. The block encompasses 

a range of thickness values from 0.1 to 1.0 inch, as shown in figure 4.  
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Figure 4. Photograph. Steel calibration block from 0.1- to 1.0-inch thicknesses. 

The calibration block is made of 1018 steel, for which the nominal velocity is set as 

0.2330 inch/μs .[10] With the fixed velocity value, the calibration function is derived for the 

measured ToF values. Specifically, we compare the true ToF (true thickness divided by 0.2330 

inch/ μs ) and the ToF measured by the Martlet ultrasonic device. Table 1 summarizes the 

comparison of ToFs for each of the 10 thickness values. 

Figure 5 plots error percentages obtained from table 1. It is evident that the error percentage is 

more significant for smaller ToFs corresponding to thinner thicknesses (less than 0.4 inch). This 

observation can be attributed to the 2.25 MHz frequency of the transducer. In general, higher 

frequency transducers offer better resolution and can lead to smaller errors. However, it is 

important to note that higher frequency transducers are limited in their ability to penetrate thicker 

specimens. Given the practical thickness range of actual bridge members, which falls between 0.4 

and 1.0 inch, the transducer with a frequency of 2.25 MHz was selected for this study. 
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Table 1. Comparison of thickness measurements on various specimens without calibration. 

Calibration Block Martlet Ultrasonic Device 

True thickness 

(inch) 

True ToF 

(μs) 

Measured 

thickness (inch) 

Measured 

ToF (μs) 

Error 

(%) 

0.10 0.858 0.0961 0.825 −3.888 

0.20 1.717 0.1937 1.663 −3.159 

0.30 2.575 0.2913 2.500 −2.917 

0.40 3.433 0.3903 3.350 −2.431 

0.50 4.292 0.4908 4.213 −1.849 

0.60 5.150 0.5912 5.075 −1.460 

0.70 6.009 0.6903 5.925 −1.391 

0.80 6.867 0.7893 6.775 −1.339 

0.90 7.725 0.8898 7.638 −1.137 

1.00 8.584 0.9904 8.500 −0.975 

 

  

Figure 5. Graph. Measured ToF vs error (without calibration). 

Based on data in figure 5, the error percentage function is assumed to be a third-degree polynomial. 

The coefficients of the polynomial function are determined by linear regression using the least 

squares method: 

𝑒(𝑡) = 0.00094𝑡3 − 0.0597𝑡2 + 0.8519𝑡 − 4.539 (1) 
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where 𝑒(𝑡) is the error percentage function and 𝑡 is the uncalibrated measured ToF (unit: μs). 

Finally, the calibrated thickness (unit: inch) is obtained as follows: 

       Calibrated Thickness = 
ToF × Nominal Velocity

2
(1 − 𝑒(𝑡)/100) (2) 

Using equation 2, calibrated thickness values of the calibration steel block are obtained, as shown 

in table 2. The maximum absolute error in calibrated thickness measurements is effectively 

reduced to 0.233 percent. The following section validates the calibrated thickness measurements 

using different steel specimens. 

Table 2. Comparison of thickness measurements on various specimens after calibration. 

Calibration Block Martlet Ultrasonic Device 

True thickness 

(inch) 

True ToF 

(μs) 

Calibrated 

thickness (inch) 

Calibrated 

ToF (μs) 

Error 

(%) 

0.10 0.858 0.0998 0.8570 −0.200 

0.20 1.717 0.2000 1.7171 0 

0.30 2.575 0..2993 2.5692 −0.233 

0.40 3.433 0.3993 3.4277 −0.175 

0.50 4.292 0.5003 4.2942 0.060 

0.60 5.150 0.6009 5.1577 0.150 

0.70 6.009 0.6999 6.0074 −0.014 

0.80 6.867 0.7989 6.8573 −0.138 

0.90 7.725 0.8995 7.7211 −0.056 

1.00 8.584 1.0005 8.5877 0.050 

 

COMPARISON WITH A HANDHELD THICKNESS MEASUREMENT GAUGE 

This section compares the measurements obtained by the Martlet ultrasonic device with a handheld 

thickness gauge currently on the market (table 3). Considering its price range ($1000), which is 

comparable to the Martlet ultrasonic device, we purchased a commercial handheld thickness-
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measurement device. Although the two devices show similar specifications, a key difference lies 

in the measurement mode. The commercial handheld device can only measure in the pulse-echo 

mode, whereas the Martlet device is designed to measure in the echo-to-echo mode. Pulse-echo 

mode utilizes the time interval between the excitation pulse to the first arriving ultrasonic echo 

signal. In contrast, the echo-to-echo mode utilizes the time interval between the neighboring 

ultrasonic echoes. In general, a device that can perform echo-to-echo measurement costs between 

$2000 and $3000 on the market, as echo-to-echo measurement usually provides greater accuracy 

and can ignore the effect of paints on the thickness measurement of steel members. 

Table 3. Comparison of two thickness measurement devices. 

 
Martlet Wireless 

Ultrasonic Device 

Commercial Handheld 

Device 

Overview 

  

Sampling frequency 80 MHz 120 MHz 

Excitation 200V pulse wave 150V square wave 

Transducer 2.25 MHz dual 2.25 MHz dual 

Measurement mode Echo-to-echo Pulse-echo 

 

Measurements obtained from the two devices were compared using steel plates with various 

thickness values. We prepared 14 different sizes of structural steel at the Georgia Institute of 

Technology (Georgia Tech) Structural Engineering and Materials Laboratory (Structures Lab) 

(figure 6). All the specimens are made of carbon steel, with a nominal velocity of 0.2339 inch/μs 
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and thicknesses ranging 0.175 to 0.1027 inch.[11] Before conducting measurements, we sanded the 

measurement surface to ensure smoothness. Each thickness was first measured using a caliper to 

obtain a reference value for the true thickness. Subsequently, thickness measurements were 

performed using the Martlet ultrasonic device with the calibrated ToF and the handheld device. 

   

a. Specimen 1 b. Specimen 2 c. Specimen 3 

   

d. Specimen 4 e. Specimen 5 f. Specimen 6 

Figure 6. Photographs. Steel specimens collected from the Structures Lab at Georgia Tech. 

(Continued on the next page) 
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g. Specimen 7 h. Specimen 8 i. Specimen 9 

   

j. Specimen 10 k. Specimen 11 l. Specimen 12 

  

 

m. Specimen 13 n. Specimen 14  

Figure 6. (Continued.) 

Table 4 summarizes the thickness measurement results from the caliper (“True” column), Martlet 

ultrasonic device, and the commercial handheld device. For 10 of 14 specimens, the Martlet 
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ultrasonic device produced better accuracy than the handheld device. This result demonstrates the 

effectiveness of the calibration function derived in the previous section and the echo-to-echo 

measurement mode implemented by the Martlet device, which, in general, produces better 

accuracy than the pulse-echo measurement mode used by the commercial handheld device.  

Table 4. Comparison of measurement results. 

Specimen 
True 

(inch) 

Martlet Ultrasonic Device 
Commercial Handheld 

Device 

Measured 

(inch) 

Error* 

(%) 

Measured 

(inch) 

Error* 

(%) 

1 0.175 0.1739 0.63 0.172 1.71 

2 0.239 0.2361 1.21 0.229 4.18 

3 0.240 0.2391 0.37 0.266 10.83 

4 0.275 0.2768 0.65 0.280 1.82 

5 0.325 0.3183 2.06 0.328 0.92 

6 0.505 0.5066 0.32 0.502 0.59 

7 0.548 0.5446 0.62 0.547 0.18 

8 0.549 0.5446 0.80 0.543 1.09 

9 0.571 0.5667 0.75 0.565 1.05 

10 0.623 0.6197 0.53 0.617 0.96 

11 0.767 0.7656 0.18 0.768 0.13 

12 0.950 0.953 0.32 0.948 0.21 

13 1.000 1.0012 0.12 0.995 0.50 

14 1.027 1.0244 0.25 1.037 0.97 

* Bold indicates the smaller error value for the specimen. 
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CHAPTER 3. PRELIMINARY VALIDATION OF CONTINUOUS WIRELESS 

THICKNESS MEASUREMENTS ON THE LAGRANGE BRIDGE 

This chapter reports field thickness measurements and preliminary instrumentation of the long-

term monitoring system on the first testbed bridge in LaGrange, GA. The chapter begins with a 

description of the bridge, followed by results of thickness measurements taken from the web and 

the flange of a girder, and finally, provides long-term thickness monitoring results obtained from 

the web of a steel girder over about seven months. 

TESTBED BRIDGE IN LAGRANGE, GA 

 

a. Overview 

 

b. Elevation 

Figure 7. Photograph and diagram. Overview of the bridge in LaGrange, GA. 

Span 4
Span 2

Span 3

Span 1
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Figure 7 shows the overview (figure 7a), and the elevation (figure 7b) of the first testbed bridge 

(Structure ID – 285-0067-0) investigated in this study. The bridge was built in 1977 and is located 

in LaGrange, GA. The condition rating by the National Bridge Inventory for this bridge is 7 – 

Good Condition. The bridge superstructure consists of six steel beams and a reinforced concrete 

deck. The bridge has four spans: two simply supported end spans and two continuous middle spans.   

FIELD THICKNESS MEASUREMENTS 

Ultrasonic thickness measurements were first conducted on the web and bottom flange of a steel 

girder located at Span 4. A 2.25 MHz dual element transducer was employed and connected to the 

Martlet ultrasonic device. The structural design documents show that Span 4 utilizes ASTM A36 

carbon steel with a W36×135 section. The nominal thickness of the W36×135 section is 0.80 inch 

for the bottom flange and 0.60 inch for the web. Sand and dust have accumulated on the surface 

of the bottom flange, as is often the case in practice, and make the thickness measurement more 

challenging compared to the clean surface of the web.[12] The entire girder has paint coatings. Due 

to the presence of coatings, the apparent thickness is larger than the nominal thickness of the steel 

itself. Therefore, instead of conducting velocity calibration by caliper measurements, this study 

uses the nominal velocity 0.2339 inch/μs for carbon steel.[13] 

Figure 8a shows the received signals of the 2.25 MHz dual-element transducer sampled by the 

high-rate ultrasonic board for the 0.60-inch-thick web with a clean surface. The received signal 

includes a sequence of echoes, which are the reflections of the ultrasonic waves created by the 

transducer. The time interval between the neighboring echoes is the ToF. To accurately obtain the 

ToF, we calculate the autocorrelation function of the received signal using the following equation: 
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𝑎[𝑘] = ∑ 𝑣[𝑘 + 𝑙]𝑣[𝑙]

𝑁−𝑘

𝑙=0

,     𝑘 = 0, … , 𝑁 (3) 

where 𝑎[𝑘] is the autocorrelation function at discrete-time lag 𝑘; 𝑣[𝑙] is the received voltage signal 

at the time step 𝑙 ; and 𝑁  is the total number of data points. Based on the peak value of the 

autocorrelation function, the uncalibrated ToF is identified as 5.08 μs for the web. Although 

alternatively one could estimate the ToF using the time difference between the first and second 

peaks in the received ultrasonic signal, the autocorrelation function is generally more robust 

against noise and with rough surface conditions. 

Similarly, figure 8b shows the received signals and autocorrelation function for the 0.80-inch-thick 

bottom flange with a dusty surface. Note that we did not clean the dust on the bottom flange. 

Therefore, autocorrelation waveforms are slightly distorted compared to the web due to the layer 

of dust. However, the peak is clearly identified at 6.82 μs.  
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a. 0.60-inch-thick web with clean surface 

 

b. 0.80-inch-thick bottom flange with dusty surface 

Figure 8. Photographs. Received ultrasonic signals and autocorrelation function. 

The thickness of each specimen is calculated by equation 2 and summarized in table 5. For the 

0.60-inch-thick web, the estimated thickness is 0.6037 inch. The difference from the nominal 

thickness of 0.60 inch is only 0.0037 inch (0.62 percent). For the 0.80-inch-thick bottom flange, 

the estimated thickness is 0.8071 inch, only 0.0071 inch (0.89 percent) different from the nominal 

thickness of 0.80 inch. In general, actual thickness values may vary from the nominal value within 

ToF = 5.08 

ToFToF

Dust on the bottom flange

ToF = 6.82 

ToFToF
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an allowable tolerance, as specified by ASTM-A6/A6M-14.[11] The measurements obtained both 

on the dusty web and the clean flange are well within their allowable tolerance of 0.03 inch from 

the corresponding nominal thickness. Therefore, this field test validates the performance of the 

developed Martlet ultrasonic device in the presence of coatings and accumulated dust on the steel 

surface.  

Table 5. Thickness measurement results on a steel girder bridge in Span 4. 

 
0.60-inch-thick 

Web (clean) 

0.80-inch-thick 

Bottom Flange (dusty) 

Uncalibrated time of flight (ToF) 5.08 μs 6.82 μs 

Calibrated time of flight (ToF) 5.16 μs 6.90 μs 

Nominal velocity 0.2339 inch/μs 0.2339 inch/μs 

Estimated thickness 0.6037 inch 0.8071 inch 

Difference from nominal thickness 0.62% 0.89% 

 

LONG-TERM ULTRASONIC THICKNESS MEASUREMENTS 

The bridge happens to have electricity available, allowing convenient implementation of the long-

term monitoring system in this preliminary investigation. A Martlet ultrasonic device is installed 

on the web of a girder located in Span 2.[14] Note that Span 2 utilizes a W135×150 steel section 

with a nominal web thickness of 0.625 inch. The Martlet unit establishes Zigbee wireless 

communication with the gateway computer installed at the edge of Span 1 of the bridge. The 

gateway is connected to a 4G LTE network, enabling the collected data to be uploaded to the cloud 

for subsequent analysis. 

Figure 9 shows the installed Martlet wireless ultrasonic device in Span 2. A 2.25 MHz dual-

element ultrasonic transducer is installed together with a magnet mount to ensure firm contact 

between the transducer and the steel surface. A wireless antenna and a 12V battery are placed next 
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to the wireless unit. The 12V battery is connected to a pulser board via a relay switch, ensuring 

battery power is only consumed during brief measurement intervals that last a few seconds. 

Consequently, the battery lifespan is significantly extended. Between the measurement surface and 

the transducer, we applied a paste-like couplant (more viscous than commonly used gel) suitable 

for long-term monitoring.  

 

Figure 9. Photographs. Installation of a Martlet wireless ultrasonic device 

for long-term thickness monitoring. 

The thickness measurements are taken at scheduled time intervals for long-term monitoring. 

Figure 10 shows the daily thickness values recorded from November 21, 2022, to June 13, 2023. 

Overall, stable measurements are obtained around 0.64 inch, close to the 0.625-inch nominal 

thickness. The ultrasonic measurement system has a resolution of 0.0015 inch. Minor fluctuations 

in the measured thickness values, either slightly higher or lower by 0.0015 inch, are observed from 

December 2022 to February 2023. These variations could be attributed to the influence of cold 

Magnet mount

Transducer

Martlet
Antenna12V battery

Couplant for long-term 

monitoring
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weather conditions on the couplant during the winter months or the couplant material taking time 

to reach a stable state until February 2023. Over the subsequent three months, the measurement 

values have remained stable, indicating the successful operation of the long-term thickness 

measurement system. This field testing validates the long-term ultrasonic thickness measurement 

system on a regular highway bridge and serves as the preliminary validation. Chapter 4 describes 

installation of the system to a second testbed bridge with corrosion. 

 

Figure 10. Plot. Daily history of the web thickness measurements 

on the bridge in LaGrange, GA  
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CHAPTER 4. LONG-TERM WIRELESS THICKNESS MEASUREMENTS 

ON THE DOUGLAS COUNTY BRIDGE 

Chapter 3 confirmed the successful operation of long-term thickness measurement on a bridge in 

good condition. This chapter presents the implementation of the long-term thickness measurement 

system on another testbed bridge with corrosion. The chapter first describes the testbed bridge in 

Douglas County, GA, and then provides the installation details followed by the long-term thickness 

measurement results from four installed wireless sensing units. 

TESTBED BRIDGE IN DOUGLAS COUNTY 

Figure 11 provides an overview of the bridge located in Douglas County, GA. The bridge consists 

of eight bents and five beams, forming a composite structure with a reinforced concrete deck. The 

middle two bents, Bents 4 and 5, are positioned above the river from the Bear Creek Reservoir, 

close to the bridge. These two middle columns (supporting Bents 4 and 5) are made of concrete, 

whereas other columns are made of wide flange steel sections. The bridge (Structure ID # 097-

0013-0) was constructed in 1957, making it 20 years older than the bridge investigated in chapter 3.  

The National Bridge Inventory condition rating for this bridge is 5 – Fair Condition. 
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a. Overview 

 

b. Elevation 

Figure 11. Photograph and drawing. Overview of the bridge in Douglas County, GA. 

 

INSTALLATION 

Figure 12 shows four wireless sensing units (U152, U156, U164, and U166) installed on this 

bridge.  The long-term thickness monitoring system also includes a gateway enclosure with a 

rechargeable battery powered by a solar panel. The details of each of these components are 

explained in the following subsections. 

Bent 3

Bent 4

Bent 5

Bent 2

Bent 1 Bent 2 Bent 3 Bent 4 Bent 5 Bent 6 Bent 7 Bent 8
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Figure 12. Diagrams. Location of four wireless sensing units. 

 

Solar Panel and Support Structure 

The long-term thickness monitoring system requires a continuous power supply for the operation 

of the gateway computer. However, unlike the previous bridge in LaGrange, which had electricity 

available, the bridge in Dougals County lacks such a power source. Consequently, a solar panel 

and solar charging battery system are installed on this bridge as part of the current project. We 

select a 200W solar panel to meet the power requirements for the continuous operation of the 

system. A solar panel support structure is designed to mount the solar panel in the middle of the 

bridge. Figure 13 shows the installed solar panel and support structure in the middle of the bridge 

between Bents 4 and 5. This location provides an unobstructed view for the panel, ensuring optimal 

exposure to sunlight. The solar panel is oriented in the south direction for maximum charging 

efficiency. 

Enclosure

- Gateway PC

- Solar charging battery

- Arduino

- Modem

- 12V battery

- Relay switch etc. 

North

Beam 1

Beam 2

Beam 3

Beam 4

Beam 5

Bent 2 Bent 3 Bent 4 Bent 5 Bent 6 Bent 7 Bent 8

(abutment)

Bent 1

(abutment)

EastWest

South

Solar Panel

Receiver

USB extension cable (gateway PC - receiver)

Solar charging cable (solar panel – solar battery)

5V power cable (USB plug - Martlets)

12V power cable (12V battery - Martlets)

U166

U156

U164

U152

U166U164U156U152

Bent 2 Bent 3 Bent 4 

(concrete)



 

26 

 

Figure 13. Photographs and diagrams. Design and installation of a solar panel 

and its support structure. 

Enclosure and Devices 

As shown in figure 12, a steel enclosure has been installed at the west end of the bridge. Figure 14 

shows photographs of the enclosure securely attached to the pole sign, housing various devices 

inside.  A modem is housed in a waterproof case and attached to the pole outside to receive a 

reliable 4G LTE network for uploading collected ultrasonic data to the cloud. Within the enclosure 

is a large 2400Wh battery that is charged by the solar panel during the daytime. A charging 

controller is connected between the panel and the battery to manually monitor charging efficiency 

and protect the panel from electrical damage. The gateway PC is powered by the battery through 

an inverter. The enclosure is equipped with a built-in lock and an external padlock for security 

purposes. 

Solar panel support structure 
between Bent 4 and 5

South

North
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Figure 14. Photograph. Enclosure with the gateway computer and solar charging battery. 

Wireless Ultrasonic Sensing Units 

Prior to the installation in April 2023, the Georgia Tech and Georgia Department of Transportation 

(GDOT) team conduct a visual inspection in October 2022 to evaluate the level of corrosion on 

structural members throughout the bridge. During the inspection, corrosion was observed on the 

west part of the bridge. In response to these findings, four wireless sensing units, namely U152, 

U156, U164, and U166, are installed across Bent 2 to Bent 4, as illustrated in figure 12. This 

subsection provides a summary of the installation locations, pictures, collected ultrasonic 

waveforms, and thickness measurement values for each sensor unit upon installation. 

Enclosure

Modem

Solar charging 
battery

Gateway PC

Charging controller
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Figure 15 shows photographs of the four installed wireless ultrasonic sensing units. Wireless unit 

U152 is installed on the top of Pile 4 on Bent 2, as shown in figure 15a. The installed location 

exhibits relatively healthy conditions.  

In the meantime, unit U156 is installed on the top of Pile 1 on Bent 3 (figure 15b), which is one of 

the more corroded pile tops on the bridge, as we can confirm a through-hole on its top. The 

motivation of installation at this location is to monitor the rate of corrosion on this corroded pile 

over time.  

Figure 15c illustrates unit U164 installed on the top of Pile 3 on Bent 3. Finally, unit U166 is 

installed on the bottom flange of Beam 3 on Bent 4 (figure 15d), as this bottom flange is one of 

the more corroded flanges on the bridge. 
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a. U152 installed on the top of Pile 4 on Bent 2 

 

 

b. U156 installed on the top of Pile 1 on Bent 3 

Figure 15. Photographs. Installation of four wireless ultrasonic units. 

(Continued on the next page) 
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c. U164 installed on the top of Pile 3 on Bent 3 

 

 

d. U166 installed on the bottom flange of Beam 3 on Bent 4 

Figure 15. (Continued). 
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a. U152 installed on the top of Pile 4 on Bent 2 

  

b. U156 installed on the top of Pile 1 on Bent 3 

  

c. U164 installed on the top of Pile 3 on Bent 3 

  

d. U166 installed on the bottom flange of Beam 3 on Bent 4 

Figure 16. Plots. Ultrasonic waveforms and autocorrelation function 

obtained from four wireless sensing units. 

Upon installation, ultrasonic waveforms are collected to validate the measurements, as shown in 

figure 16. The autocorrelation function is calculated to automatically identify the peak, which 



 

32 

corresponds to the uncalibrated ToF. We confirm that ultrasonic signals are reliably obtained from 

the installed four units. The waveforms obtained from U166 are slightly distorted due to the rough 

surface conditions at the bottom flange. 

Corresponding to ultrasonic waveforms in figure 16, thickness values are calculated using 

equation 1 and the nominal velocity 0.2339 inch/μs. Table 6 provides a summary of the thickness 

measurement values from the four wireless ultrasonic sensing units. As the pile tops exhibit 

relatively healthy conditions, the thickness values measured by U152, U156, and U164 closely 

match the nominal thickness of 0.435 inch. The differences between the measured and nominal 

thicknesses are confirmed to be within the manufacturer’s tolerance of 0.03 inch. On the other 

hand, for the corroded bottom flange measured by U166, the remaining thickness is reduced by 

nearly 30%, which can also be visually confirmed from figure 16d. 

Table 6. Summary of thickness measurement results from four wireless sensing units. 

Unit Number 

Calibrated 

ToF 

(𝛍𝐬) 

Measured 

Thickness 

(inch) 

Nominal 

Thickness 

(inch) 

Difference from the 

Nominal Thickness 

(inch) 

U152 3.943 0.4611 0.4350 0.026 (6.0%) 

U156 3.541 0.4140 0.4350 −0.021 (−4.8%) 

U164 3.692 0.4317 0.4350 −0.013 (−0.8%) 

U166 4.507 0.5270 0.7450 −0.198 (−29.3%) 

 

LONG-TERM THICKNESS MEASUREMENT RESULTS 

In this section, we present the long-term thickness measurement results obtained from the four 

wireless ultrasonic sensing units. The gateway computer is configured to initiate ultrasonic data 

collection at scheduled intervals for each sensor. The collected ultrasonic data are then uploaded 

to the cloud. 
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Figure 17 displays the daily history of thickness measurement values obtained from April 4 to 

July 23, 2023. Three units U152, U156, and U164 installed at pile tops have provided consistent 

measurements over the last three months (up to the time of this report). However, reliable 

measurements from U166 have ceased near end of May.  Soldering quality on the prototype circuit 

board is suspected to be the cause; replacement of the circuit board would resolve the issue.  

Some data points are missing due to the challenge with the solar charging battery. Specifically, the 

battery was configured by the manufacturer to occasionally shut off, resulting in data gaps. To 

resolve this issue, we replaced the battery with one from a different manufacturer on July 10, 2023. 

The battery issue was successfully resolved after this replacement, and measurements are now 

being obtained consistently. 
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Figure 17. Plots. Daily history of thickness measurements on the Douglas County bridge. 
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CHAPTER 5. CONCLUSIONS 

This project implemented long-term wireless ultrasonic thickness measurement systems on two 

testbed bridges in Georgia. The summary and conclusions are made as follows: 

• The developed system consists of the Martlet wireless ultrasonic device, a gateway 

computer, and a solar charging battery. The system is configured to collect ultrasonic 

thickness data of steel bridge members and upload it to the cloud automatically. The 

developed system allows the remote monitoring of thickness values over time without 

physically accessing measurement locations. 

• On the bridge in LaGrange, thickness values were recorded over about seven months. 

Although the measurements stabilized in the last three months, we observed slight 

variations for the first few months of installation. These variations could be attributed to 

cold weather conditions during the winter months or the couplant material requiring time 

to achieve a stable state.  

• A second testbed bridge in Douglas County exhibits corrosion conditions on structural 

members. Three wireless sensing units have obtained reliable measurements since the 

installation and are still functioning properly till the time of this report’s preparation. Due 

to the short duration of the project, the measurement values have not yet shown any changes 

in thickness values.   
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